ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Error message

Notice: Undefined index: en in company_name() (line 470 of /fs/www/izvestiya_new/public/sites/all/modules/custom/biblio_list/biblio_list.module).

For citation:

Rumyantsev A. M., Zhelnin B. I. Lithiated iron phosphate for commercial lithium-ion batteries. Electrochemical Energetics, 2010, vol. 10, iss. 1, pp. 19-22.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.135

Lithiated iron phosphate for commercial lithium-ion batteries

Autors: 
Rumyantsev A. M., JSC Accumulator Company Rigel
Zhelnin B. I., JSC NPF "Baltic Manufactory"
Abstract: 

Behavior of PH/P1 lithiated iron phosphate (Phostech Lithium Inc, Canada) used as positive electrode material for Li-ion battery with LiPF6-based electrolyte was investigated. Specific capacity of the material reached 130 mA·h/g at a rate of 0.5С and 20°C, 105 mA·h/g (1С) and 95 mA·h/g (2.1C). Cell capacity increased by 20% during first 50 cycles and minor capacity fade at a rate of 0.04% per cycle is observed after 300 cycle when cycled at 2C rate versus carbon negative electrode (CMS, PRC).

Reference: 
  1. Striebel K., Shim J., Sierra A., Yang H., Song X., Kostecky R., McCarthy K. The development of low cost LiFePO4-based high power lithium-ion batteries // J. Power Souces. 2005. Vol.146. P.33–38.
  2. Prosini P., Carewska M., Scaccia S., Wisnievski P., Pasquali M. // Long-term ceclability of nanostructured LiFePO4. // Electrochim. Acta. 2003. Vol.48. P.4205–4211.
  3. Doeff M., Wilcox J, Kostecki R., Lau G. Optimization of carbon coatings on LiFePO4 // J. Power Sources. 2006. Vol.163. Р.180–184.
  4. Striebel K., Shim J., Srinivasan V., Newman J. Comparison of LiFePO4 from different sources // J. of Electrochem. Soc. 2005. Vol.152. P.A664-A670.
  5. Choi D., Prashant N., Kumta P.N. Surfactant based sol–gel approach to nanostructured LiFeP04 for high rate Li-ion batteries // J. of Power Sources. 2007. Vol.163. P.1064–1069.
  6. Kang H.-C., Jun D.-K., Jin B., Jin E., Park K.-H., Gu H.-B., Kim K.-W. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling // J. of Power Sources. 2008. Vol.79. P.340–346.
  7. Kuwahara A., Suzuki S., Miyayama M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries // Ceramics Intern. 2008. Vol.34. P.863–866.
  8. Kim J.-K., Choi J.-W., Chauhan G. S. et al. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis // Electrochim. Acta. 2008. Vol.53. P.8258–8264.
  9. Gaberscek M., Dominko R., Jamnik J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes // Electrochem. Comm. 2007. Vol.9. P.2778–2783.
  10. Amine К., Lin J., Belharouak I. High temperature storage and Cycling of C-LiFePO4/graphite Li-ion cells // Electrochem. Comm. 2005. Vol.7. P.669–673.
Received: 
28.08.2009
Accepted: 
28.08.2009
Published: 
22.03.2010