For citation:
Vecherskii S. I., Konopel'ko M. A., Batalov N. N. Catalytic activity of LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) oxides for molten carbonate fuel cell. Part 1. Polarization Characteristics of Porous Gas Diffusion Electrodes in (Li0.62K0.38)2CO3 Melt. An Experimental Study. Electrochemical Energetics, 2014, vol. 14, iss. 3, pp. 133-140. DOI: 10.18500/1608-4039-2014-14-3-133-140, EDN: TQCJOT
Catalytic activity of LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) oxides for molten carbonate fuel cell. Part 1. Polarization Characteristics of Porous Gas Diffusion Electrodes in (Li0.62K0.38)2CO3 Melt. An Experimental Study
This paper presents polarization characteristics of porous gas diffusion cathodes prepared from LaLi0.1M0.1Fe0.8O3-d (M = Fe, Co, Ni) oxides with a perovskite related structure and Li0.1Ni0.9O oxide with a rock salt structure. The characteristics were measured in the laboratory scale fuel cell in the temperature range 820–1000 K. It has been shown that electrochemical activity of the cathodes with Co and Ni additives exceeds the activity of the Li0.1Ni0.9O cathode below 970 K.
1. Baumgartner C. E., Arendt R. H., Iacovangelo C. D., Karas B. R. Molten Carbonate Fuel Cell Cathode Materials Study. J. Electrochem. Soc., 1984, vol. 131, no. 10, pp. 2217–2221.
2. Baumgartner C. E. NiO Solubility in Molten Li/K Carbonate under Molten Carbonate Fuel Cell Cathode Environments. J. Electrochem. Soc., 1984, vol. 131, no. 8, pp. 1850–1851.
3. Kunz H. R., Bregoli L. J., Luczak F. J. Cathodes for Molten Carbonate Fuel Cells. Patent US no. 4206270, H01M 8/14, 1980.
4. Vogel W. M., Smith S. W. Molten Carbonate Fuel Cell Matrices. Patent US no. 4511636, H01M 4/86, 1985.
5. Bychin V. P., Konopel'ko M. A., Molchanova N. G. Variation of the Electrical and Electrochemical Properties of La0.8Sr0.2MnO3 and La0.7Sr0.3CoO3 during Their Interaction with Molten Carbonates of Lithium and Potassium. Rus. J. Electrochem., 1997, vol. 33, no. 12, pp. 1320–1323.
6. Batalov N. N., Vecherskij S. I., Zvezdkin M. A., Konopel'ko M. A., Skazkin A. N. Issledovanie al'ternativnyh katodnyh materialov dlja karbonatnogo toplivnogo jelementa v IVTJe UrO RAN [An Investigation of the Alternative Cathode Materials for Molten Carbonate Fuel Cell in the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences]. Toplivnye jelementy i jenergoustanovki na ih osnove [Fuel cells and power plants on their basis]. Obninsk, 2000, pp. 74–77 (in Russian).
7. Vecherskij S. I., Esina N. O., Batalov N. N. Vzaimodejstvie rjada ferritov i manganitov s jevtekticheskim rasplavom (Li0.62K0.38)2CO3 [An Interaction of the Series of the Ferrites and Manganites with Eutectic Melt (Li0.62K0.38)2CO3]. Fundamental'nye problemy jelektrohimicheskoj Energetiki [Fundamental problems of electrochemical energetics]: Materialy IV mezhdunar. konf. (21–24 ijunja, g. Saratov) [Proceedings of the IV Intern. Conf. (21–24 June, Saratov)]. Saratov, Sarat. University publ., 1999, pp. 260–262 (in Russian).
8. Vecherskii S. I., Batalov N. N., Shabashov V. A., Shekhtman G. Sh. X-ray Diffraction and Mцssbauer Study of Complex Oxides LaLixFe1-xO3-y (0 \leq x \leq 0.25). Rus. J. Inorganic Chemistry, 1999, vol. 44, no. 10, pp. 1598–1604.
9. Vecherskii S. I., Batalov N. N. Electrical Conductivity and Seebeck Coefficient of the LaLixFe1-xO3-y (0 \leq x \leq 0.25)) Oxides. Rus. J. Inorganic Chemistry, 2000, vol. 45, no. 9, pp. 1394–1400.
10. Vecherskii S. I., Batalov N. N., Esina N. O., Shekhtman G. Sh. Electrical Properties of the LaLi0.1M0.1Fe0.8O3-d Solid Solutions (M = Mn, Fe, Co, Ni). Physics Solid State, 2003, vol. 45, no. 9. pp. 1648–1654.
11. Noort M. A., Put P. J.J. M., Schoonman J. Doped LiFeO2 as MCFC Cathode Material. High Temp. – High Pressures, 1988, vol. 20, no. 2, pp. 197–201.
12. Vecherskij S. I., Tabatchikova S. N., Antonov B. D., Birjukov V. A., Molchanova N. G. Vlijanie metodiki sinteza na fiziko-himicheskie svojstva LaLi0.1Co0.1Fe0.8O3-\delta [An Influence of the Synthesis Technique on the Physicochemical Properties of LaLi0.1Со0.1Fe0.8O3-\delta]. Electrokhimicheskaya Energetika [Electrochemical energetics], 2010, vol. 10, no. 4, pp. 161–169 (in Russian).
13. Vecherskij S. I., Konopel'ko M. A., Batalov N. N. Kataliticheskaja aktivnost' katoda iz LaLi0.1Co0.1Fe0.8O3-d v rasplave (Li0.62K0.38)2CO3. Chast' 2. Mehanizmy reakcii i kataliticheskaja aktivnost' oksidnogo jelektroda [Catalytic Activity of LaLi0.1Co0.1Fe0.8O3-d Cathode in (Li0.62K0.38)2CO3 Melt. Part 2. The Reaction Mechanisms and Catalytic Activity of the Oxide Electrode]. Electrokhimicheskaya Energetika [Electrochemical energetics], 2014, vol. 14, no. 1, pp. 19–25 (in Russian).
14. Wilemski G. Simple Porous Models for Carbonate Fuel Cells. J. Electrochem. Soc., 1983, vol. 130, no. 1, pp. 117–121.
15. Yuh C. Y., Selman J. R. Polarization of the Molten Carbonate Fuel Cell Anode and Cathode. J. Electrochem. Soc.: Electrochemical Science and Technology, 1984, vol. 131, no. 9, pp. 2062–2069.
16. Yuh C. Y., Selman J. R. The Polarization of Molten Carbonate Fuel Cell Electrodes. I. Analysis of Steady-State Polarization Data. J. Electrochem. Soc., 1991, vol. 138, no. 12, pp. 3642–3648.
17. Fontes E., Lagergren C., Simonsson D. Mathematical Modeling of the MCFC Cathode on the Linear Polarization of the NiO Cathode. J. Electroanalytical Chemistry, 1997, vol. 432, pp. 121–128.
18. Prins-Jansen J. A., Hemmes K., de Wit J. H. W. An Extensive Treatment of the Agglomerate Model for Porous Electrodes in Molten Carbonate Fuel Cells – I. Qualitative Analysis of the Steady-State Model. Electrochimica Acta, 1997, vol. 42, no. 23–24, pp. 3585–3600.
19. Stepanov G. K., Trunov A. M. Elektroprovodnost' sistemy NiO – Li2O v intervale temperatur ot 20 do 900 °C [Electrical Conductivity of the NiO – Li2O System in the temperature range from 20 to 900 °C]. [Izvestija Sibirskogo otdelenija AN SSSR – Proceedings of Siberian Branch of the USSR Academy of Sciences], 1961, no. 6, pp. 67–70 (in Russian).
20. Antolini E., Leonini M., Massarotti V., Marini A., Berbenni V., Capsoni D. On the Role of Lithium Carbonate in the Preparation of Doped Nickel Oxide Cathodes for Molten Carbonate Fuel Cells. Solid State Ionics, 1990, vol. 39, pp. 251–261.
21. Berbenni V., Massarotti V., Capsoni D., Riccardi R., Marini A., Antolini E. Structural and Microstructural Study of the Formation of the Solid Solution LixNi1-xO. Solid State Ionics, 1991, vol. 48, pp. 101–111.
22. Mott N. F., Davis E. A. Electron Processes in Non-Crystalline Materials. Clarendon Press, Oxford, 1979 (Rus. Ed.: Mott N., Djevis Je. Eelektronnye processy v nekristallicheskih veshhestvah. Moscow, Mir Publ., 1982. 368 p.) (in Russian).
23. Jewulski J., Suski L. Model of the Isotropic Anode in the Molten Carbonate Fuel Cell. J. Applied Electrochem., 1984, vol. 14, no. 2, pp. 135–143.
24. Janowitz K., Kah M., Wendt H. Molten Carbonate Fuel Cell Research. Part I. Comparing Cathodic Oxygen Reduction in Lithium/Potassium and Lithium/Sodium Carbonate Melts. Electrochimica Acta, 1999, vol. 45, no. 23–24, pp. 1025–1037.