ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Zhuravlev V. D., Shchekoldin S. I., Andryushin S. E., Sherstobitova E. A., Nefedova K. V., Bushkova O. V. Electrochemical Characteristics and Phase Composition of Lithium-Manganese Oxide Spinel with Excess Lithium Li_(1 + x)Mn?O?. Electrochemical Energetics, 2020, vol. 20, iss. 3, pp. 157-?. DOI: 10.18500/1608-4039-2020-20-3-157-170, EDN: PFEWTC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 148)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
PFEWTC

Electrochemical Characteristics and Phase Composition of Lithium-Manganese Oxide Spinel with Excess Lithium Li_(1 + x)Mn?O?

Autors: 
Zhuravlev Viktor Dmitrievich, Institute of Solid State Chemistry
Sherstobitova Elena Aleksandrovna, Institute of Solid State Chemistry
Nefedova Kseniya Valer'evna, Institute of Solid State Chemistry
Bushkova Ol'ga Viktorovna, Institute of Solid State Chemistry
Abstract: 

The paper presents the results of the study of phase composition and electrochemical performance of lithium-manganese oxide spinel with excess lithium of nominal composition of Li1 + xMn2O4 obtained by solid-phase method. It was established that samples with x = 0.1 and 0.2 were composite materials with LiMn2O4 being the basic phase and Li2MnO3 being the impurity (3 and 7 mas.%, respectively) also comprising trace amounts of MnO2. The composite material with 3% of Li2MnO3 (x = 0.1) retained 80–90% of the initial specific capacity after 300 charge-discharge cycles at C/2, while single-phase stoichiometric spinel LiMn2O4 retained less than 70–75%.

Reference: 

1. Dobrovolsky Yu. A., Bushkova O. V., Astaf’ev E. A., Evshchik E. Yu., Kayumov R. R., Korchun A. V., Drozhzhin O. V. Litij-ionnye akkumuljatory dlja jelektrotransporta [Li-ion batteries for electric vehicle]. Chernogolovka, IPKhF RAN, 2019. 110 p. (in Russian).

2. Blomgren G. E. The development and future of lithium ion batteries. J. Electrochem. Soc., 2017, vol. 164, no. 1. P. A5019–A5025. DOI: https://doi.org/10.1149/2.0251701jes

3. Schmuch R., Wagner R., Horpel G., Placke T., Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, vol. 3, no. 4, pp. 267–278. DOI: https://doi.org/10.1038/s41560-018-0107-2

4. Julien C. M., Mauger A., Zaghib K., Groult H. Comparative issues of cathode materials for Li-ion batteries. Inorganics, 2014, vol. 20, pp. 132–154. DOI: https://doi.org/10.3390/inorganics2010132

5. Mauger A., Julien C. M. Critical review on lithium-ion batteries : are they safe? Sustainable? Ionics, 2017, vol. 23, no. 8, pp. 1933–1947. DOI: https://doi.org/10.1007/s11581-017-2177-8

6. Whittingham M. S. Lithium batteries and cathode materials. Chem. Rev., 2004, vol. 104, no. 10, pp. 4271–4302. DOI: https://doi.org/10.1021/cr020731c

7. Bruce P. G. Energy storage beyond the horizon : Rechargeable lithium batteries. Solid State Ionics, 2008, vol. 179, no. 21–26, pp. 752–760. DOI: https://doi.org/10.1016/j.ssi.2008.01.095

8. Nitta N., Wu F., Lee J. T., Yushin G. Li-ion battery materials : present and future. Mater. Today, 2015, vol. 18, no. 5, pp. 252–264. DOI: https://doi.org/10.1016/j.mattod.2014.10.040

9. Winter M., Besenhard J. O., Spahr M. E., Novak P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998, vol. 10, no. 10, pp. 725–763. DOI: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

10. Daniel C., Mohanty D., Li J., Wood D. L. Cathode materials review. AIP Conf. Proc., 2014, vol. 1597, pp. 26–43. DOI: https://doi.org/10.1063/1.4878478

11. Sheth J., Karan N. K., Abraham D. P., Nguyen C. C., Lucht B. L., Sheldon B. W., Guduru P. R. In situ stress evolution in Li1 + xMn2O4 thin films during electrochemical cycling in Li-ion cells. J. Electrochem. Soc., 2016, vol. 163, no. 13. P. A2524–A2530. DOI: https://doi.org/10.149/2.0161613jes

12. Ledwaba R. S., Sayle D. C., Ngoepe P. E. Atomistic simulation and characterisation of spinel Li1 + xMn2O4 (0 ? x ? 1) nanoparticles. ACS Appl. Energy Mater., 2020, vol. 3, no. 2. pp. 1429–1438. DOI: https://doi.org/10.1021/acsaem.9b01870

13. Shibiri B., Ledwaba R. S., Ngoepe P. E. Discharge induced structural variation of simulated bulk Li1 + xMn2O4 (0 ? x ? 1). Opt. Mater., 2019, vol. 92, pp. 67–70. DOI: https://doi.org/10.1016/j.optmat.2019.03.050

14. Tarascon J. M., Guyomard D. Li Metal-free rechargeable batteries based on Li1 + xMn2O4 cathodes (0 ? x ? 1) and carbon anodes. J. Electrochem. Soc., 1991, vol. 138, no. 10, pp. 2864–2868. DOI: https://doi.org/10.1149/1.2085331

15. Chan H. W., Duh J. G., Sheen S. R. LiMn2O4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries. J. Power Sources, 2003, vol. 115, pp. 110–118. DOI: https://doi.org/10.1016/s0378-7753(02)00616-x

16. Li B., Chen M., Bai H., Huang X., Guo J. Synthesis, characterization and electrochemical properties of Li1 + xMn2O4 spinels prepared by solution combustion synthesis. Adv. Mater. Res., 2013, vol. 652–654, pp. 891–895. DOI: https://doi.org/10.4028/www.scientific.net/AM~R.652-654.891

17. Tarascon J. M., Guyomard D., Baker G. L. An update of the Li metal-free rechargeable battery based on Li1 + xMn2O4 cathodes and carbon anodes. J. Power Sources, 1993, vol. 44, no. 1–3, pp. 689–700. DOI: https://doi.org/10.1016/0378-7753(93)80220-J

18. Chan H. W., Duh J. G., Sheen S. R. Microstructure and electrochemical properties of LBO-coated Li-excess Li1 + xMn2O4 cathode material at elevated temperature for Li-ion battery. Electrochim. Acta, 2006, vol. 51, pp. 3645–3651. DOI: https://doi.org/10.1016/j.electacta.2005.10.018

19. Wang Y., Nishiuchi S., Kuroki T., Yamasaki N., Takikawa S., Bignall G. Hydrothermal synthesis of spinel Li1 + xMn2O4 as cathode material for rechargeable lithium battery. Int. J. High Pressure Res., 2001, vol. 20, pp. 299–305. DOI: https://doi.org/10.1080/08957950108206177

20. Rodr??guez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B, 1993, vol. 192, no. 1–2, pp. 55–69. DOI: https://doi.org/10.1016/0921-4526(93)90108-I

21. Julien C., Mauger A., Vijh A., Zaghib K. Lithium Batteries : Science and Technology. New York, etc., Springer, 2016, pp. 175–180.

22. Jiao F., Bao J., Hill A. H., Bruce P. G. Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries. Angew. Chem., 2008, vol. 120, pp. 9857–9862. DOI: https://doi.org/10.1002/ange.200803431

23. Han C.-G., Zhu C., Saito G., Akiyama T. Improved electrochemical performance of LiMn2O4 surface-modified by a Mn4+-rich phase for rechargeable lithium-ion batteries. Electrochim. Acta, 2016, vol. 209, pp. 225–234. DOI: https://doi.org/10.1016/j.electacta.2016.05.075

24. Reddy K. S., Gangaja B., Nair S. V., Santhanagopalan D. Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochim. Acta, 2017, vol. 250, pp. 359–367. DOI: https://doi.org/10.1016/j.electacta.2017.08.054

25. Yu H., Dong X., Pang Y., Wang Y., Xia Y. High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta, 2017, vol. 228, pp. 251–258. DOI: https://doi.org/10.1016/j.electacta.2017.01.096

26. Xiong L., Xu Y., Tao T., Song J., Goodenough J. B. Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 24563–24568. DOI: https://doi.org/10.1039/C2JM34717B

27. Komaba S., Sasaki T., Kumagai N. Preparation and electrochemical performance of composite oxide of alpha manganese dioxide and Li–Mn–O spinel. Electrochim. Acta, 2005, vol. 50, pp. 2297–2305. DOI: https://doi.org/10.1016/j.electacta.2004.10.056

Received: 
21.05.2020
Accepted: 
21.07.2020
Published: 
30.09.2020