ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Goffman V. G., Gorokhovskii A. V., Makarova A. D., Tret'yachenko E. V., Vikulova M. A., Bainyashev A. M., Kolokolova E. V., Telyukova T. S. Impedance spectroscopy of modified potassium titanates. I. Electrochemical Energetics, 2022, vol. 22, iss. 2, pp. 61-69. DOI: https://doi.org/10.18500/1608-4039-2022-22-2-61-69, EDN: VEPMKE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 136)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
546.56
EDN: 
VEPMKE

Impedance spectroscopy of modified potassium titanates. I

Autors: 
Goffman Vladimir Georgievich, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Makarova Anna Dmitrievna, The Saratov State Technical University of Gagarin Yu. A.
Tret'yachenko Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Vikulova Mariya Aleksandrovna, The Saratov State Technical University of Gagarin Yu. A.
Bainyashev Aleksei Mikhailovich, The Saratov State Technical University of Gagarin Yu. A.
Kolokolova Elena Vasil'evna, The Saratov State Technical University of Gagarin Yu. A.
Telyukova Tat'yana Sergeevna, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

The electrochemical and electrophysical properties of the protonated and modified with silver iodide potassium titanates, which can be applied in energy storage units, have been investigated by impedance spectroscopy. It has been shown that the dielectric losses at medium and high frequencies are weakly dependent on the polarizing voltage. It has also been established that transfer in modified potassium titanate can be made through potassium and silver ions. The equivalent scheme of the process has been proposed and the magnitudes of the Warburg impedances have been calculated.

Reference: 
  1. Sanchez-Monjaras T., Gorokhovsky A., Escalante-Garcia J. I. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios. Journal of the American Ceramic Society, 2008, vol. 91, no. 9, pp. 3058–3065. https://doi.org/10.1111/j.1551-2916.2008.02574.x
  2. Goffman V. G., Gorokhovsky A. V., Gorshkov N. V., Fedorov F. S., Tretychenko E. V., Sevrugin A. V. Data on electrical properties of nickel modified potassium polytitanates compacted powders. Data in Brief, 2015, vol. 4, pp. 193–198. https://doi.org/10.1016/j.dib.2015.05.010
  3. Uvarov N. F. Kompozitsionnye tverdye elektrolity [Composite Solid Electrolytes]. Novosibirsk, Izd-vo SO RAN, 2008. 254 p. (in Russian).
  4. Lidin R. A., Andreeva L. L., Molochko V. A. Konstanty neorganicheskikh veshchestv : spravochnik [Constants of Inorganic Substances : handbook]. Moscow, Drofa Publ., 2008. 685 p. (in Russian).
  5. Girsova M. A., Golovina G. F., Kurylenko L. N., Anfimova I. N. Influence of the heat treatment regime on the elemental composition and spectral properties of composite materials based on silicate porous glasses doped with AgI and Er3+ ions. Physics and Chemistry of Glass, 2020, vol. 46, no. 6, pp. 574–584 (in Russian).
  6. Goffman V. G., Makarova A. D., Maksimova L. A., Gorokhovsky A. V., Tretyachenko E. V., Gorshkov N. V., Vikulova M. A., Baynyashev A. M. Solid proton – conducting ceramic electrolyte for energy storage. Electrochemical Energetics, 2021, vol. 21, no. 4, pp. 197–205 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-4-197-205
  7. Gorokhovsky A. V., Tretyachenko E. V., Goffman V. G., Gorshkov N. V., Fedorov F. S., Sevryugin A. V. Preparation and Dielectric Properties of Ceramics Based on Mixed Potassium Titanates with the Hollandite Structure. Inorganic Materials, 2016, vol. 52, no. 6, pp. 587–592. https://doi.org/10.1134/S0020168516060042
  8. Zidi N., Chaouchi A., Rguiti M., Lorgouilloux Y., Courtois C. Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 − x% (K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics, 2019, vol. 551, no. 1, pp. 152–177. https://doi.org/10.1080/00150193.2019.1658043
  9. Pandey S., Kumar D., Parkash O., Pandey L. Equivalent circuit models using CPE for impedance spectroscopy of electronic ceramics. Integrated Ferroelectrics, 2017, vol. 183, no. 1, pp. 141–162. https://doi.org/10.1080/10584587.2017.1376984
  10. Yang J. L., Yuan Y. F., Wu H. M., Li Y., Chen Y. B., Guo S. Y. Preparation and electrochemical performances of ZnO nanowires as anode materials for Ni/Zn secondary battery. Electrochimica Acta, 2010, vol. 55, no. 23, pp. 7050–7054. https://doi.org/10.1016/j.electacta.2010.06.075
  11. Telegina O. S., Goffman V. G., Gorokhovsky A. V., Kompan M. E., Sleptsov V. V., Gorshkov N. V., Kovineva N. N., Kovnev A. V. The nature of conductivity in amorphous potassium polytitanate. Electrochemical Energetics, 2015, vol. 15, no. 1, pp. 23–28 (in Russian).
  12. Oven R. AC impedance of poled glass during de-poling. Solid State Ionics, 2018, vol. 315, pp. 14–18. https://doi.org/10.1016/j.ssi.2017.11.018
Received: 
01.06.2022
Accepted: 
25.06.2022
Published: 
07.11.2022