For citation:
Grigor’yeva V. A., Burashnikova M. M. Study of the electrochemical properties of carbon fibrous materials for a negative electrode of a hybrid supercondenser with acid electrolyt. Electrochemical Energetics, 2022, vol. 22, iss. 1, pp. 21-34. DOI: 10.18500/1608-4039-2022-22-1-21-34, EDN: AFYHEY
Study of the electrochemical properties of carbon fibrous materials for a negative electrode of a hybrid supercondenser with acid electrolyt
The electrochemical characteristics of electrodes based on various fibrous carbon materials (manufactured by OOO NPTs Uvikom) for hybrid supercapacitors C/PbO2 with an acid electrolyte have been investigated. It is shown that the highest values of the capacitive characteristics of the electrodes were obtained using carbon activated felt UVIS-AK-V-170, characterized by capacities up to 400 F/g.
1. Hu S., Zhang S., Pan N., Hsieh Y.-L. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J. Power Sources, 2014, vol. 270, pp. 106–112. https://www.doi.org/10.1016/j.jpowsour.2014.07.063
2. Qian H., Diao H., Shirshova N., Greenhalgh E. S., Steink J. G. H., Shaffe M. S. P., Bismarck A. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. J. Colloid and Interface Science, 2013, vol. 395, no. 1, pp. 241–248. https://www.doi.org/10.1016/j.jcis.2012.12.015
3. Jin Z., Yan X., Yu Y., Zhao G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Materials Chemistry A, 2014, vol. 2, no. 30, pp. 11706–11715. https://www.doi.org/10.1039/C4TA01413H
4. Dong L., Xu C., Yang Q., Fang J., Li Y., Kang F. High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J. Materials Chemistry A, 2015, vol. 3, no. 8, pp. 4729–4737. https://www.doi.org/10.1039/C4TA06494A
5. Abd Razak S. I., Wahab I. F., Fadil F., Dahli F. N., Md Khudzari A. Z., Adeli H. A review of electrospun conductive polyaniline based nanofiber composites and blends : processing features, applications, and future directions. Advances in Materials Science and Engineering, 2015, article ID 356286, 19 p. https://www.doi.org/10.1155/2015/356286
6. Mijailovic D. M., Vukcevic M. M., Stevic Z. M., Kalijadis A. M., Stojanovic D. B., Panic V. V., Uskokovic P. S. Supercapacitive performances of activated highly microporous natural carbon macrofibers. J. Electrochem. Soc., 2017, vol. 164, no. 6, pp. A1061–A1068. https://www.doi.org/10.1149/2.0581706jes
7. Nakagawa H., Shudo A., Miura K. High-capacity electric double-layer capacitor with high-densityactivated carbon fiber electrodes. J. Electrochem. Soc., 2000, vol. 147, no. 1, pp. 38–42. https://www.doi.org/10.1149/1.1393154
8. Kim Y. J., Matsuzawa Y., Ozaki S., Park K. C., Kim C., Endo M., Yoshida H., Masuda G., Sato T., Dresselhaus M. S. High energy-density capacitor based on ammonium salt type ionic liquids and their mixing effect by propylene carbonate. J. Electrochem. Soc., 2005, vol. 152, pp. A710–A715. https://www.doi.org/10.1149/1.1869232
9. Ishikawa M., Sakamoto A., Morita M., Matsuda Y., Ishida K. Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources, 1996, vol. 60, pp. 233–238. https://www.doi.org/10.1016/S0378-7753(96)80016-4
10. Okajima K., Ohta K., Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim. Acta, 2005, vol. 50, pp. 2227–2231. https://www.doi.org/10.1016/j.electacta.2004.10.005
11. Hsieh C. T., Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 2002, vol. 40, pp. 667–674. https://www.doi.org/10.1016/S0008-6223(01)00182-8
12. Gu W., Yushin G. Review of nanostructured carbon materials for electrochemical capacitorapplications : Advantages and limitations of activated carbon, carbide-derivedcarbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-likecarbon, and grapheme. Wiley Interdisciplinary Reviews :Energy and Environment, 2014, vol. 3, no. 5, pp. 424–473. https://www.doi.org/10.1002/wene.102