For citation:
Rodionov V. V., Nichvolodin A. G., Kazarinov I. A. The chemical current sources with a magnesium anode: Electrode materials and their properties. Electrochemical Energetics, 2022, vol. 22, iss. 2, pp. 70-99. DOI: 10.18500/1608-4039-2022-22-2-70-99, EDN: TUGMLA
The chemical current sources with a magnesium anode: Electrode materials and their properties
The article is devoted to the study of the possibility of creating chemical current sources with a magnesium anode. The work presents the continuation of the analysis of conventional current sources with high specific characteristics. The article describes the types of cathode-active substances that have potential possibility in making chemical current sources with a magnesium anode or an anode based on magnesium intermetallic compounds.
A detailed analysis of publications on the use of the selected systems for making competitive chemical current sources is given, discharge and discharge-charge curves are presented and the specific characteristics of the studied systems are calculated. The necessary conclusions on the application of selected electrochemical systems with a magnesium anode have been made.
- Rodionov V. V., Nichvolodin A. G., Kazarinov I. A. Electrolytes for rechargeable chemical current sources with magnesium anode. Electrochemical Energetics, 2022, vol. 22, no. 1, pp. 3–20 (in Russian).
- https://doi.org/10.18500/1608-4039-2022-22-1-3-20
- Saha P., Datta M. K., Velikokhatnyi O. I., Manivannan A., Alman D., Kumta P. N. Rechargeable magnesium battery: Current status and key challenges for the future. Progress in Materials Science, 2014, vol. 66, pp. 1–86. https://doi.org/10.1016/j.pmatsci.2014.04.001
- Bucur C. B. Challenges of a Rechargeable Magnesium Battery. A Guide to the Viability of this Post Lithium-Ion Battery. Springer, Switzerland, 2018. 67 p. https://doi.org/10.1007/978-3-319-65067-8
- Periyapperuma K., Tran T. T., Purcell M. I., Obovac M. N. The Reversible Magnesiation of Pb. Electrochimica Acta, 2015, vol. 165, pp. 162–165. https://dx.doi.org/10.1016/j.electacta.2015.03.006
- Murgia F., Weldekidan E. T., Stievano L., Monconduit L., Berthelot R. First investigation of indium-based electrode in Mg-battery. Electrochemistry Communications, 2015, vol. 60, pp. 56–59. https://dx.doi.org/10.1016/j.elecom.2015.08.007
- Aurbach D., Gofer Y., Schechter A., Zhogua L., Gizbar H. Perezaryazhaemye galvanicheskieel elementy s vysokoi plotnostyu energii i nevodnye electrolity [Rechargeable high energy density electrochemical cells and non-aqueous electrolytes]; Bar-Ilan University, assignee. Russian Federation patent RF no. 2277272, 2006 May 27 (in Russian).
- Muldoon J., Bucur C. B., Gregory T. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists – Electrolytes and Cathodes Needed. Angew. Chem. Int. Ed., 2017, vol. 6, pp. 12064–12084. https://doi.org/10.1002/anie.201700673
- Muldoon J., Bucur C. B., Gregory T. Quest for non-aqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev., 2014, vol. 114. pp. 11683–11720. https://doi.org/10.1021/cr500049y
- Aurbach D., Lu Z., Schechter A., Gofer Y., Gizbar H., Turgeman R., Cohen Y., Moshkovich M., Levi E. Prototype systems for rechargeable magnesium batteries. Nature, 2000, vol. 407, pp. 724–727. https://doi.org/10.1038/35037553
- Mohtadi R., Mizuno F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol., 2014, vol. 5, pp. 1291–1311. https://doi.org/10.3762/bjnano.5.143
- Morachevskii A. G., Popovich А. А. Magnesium-ion batteries – a new direction of research. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki, 2019, vol. 25, no. 3, pp. 133–139 (in Russian). https://doi.org/10.18721/JEST.25312
- Gregory T. D., Hoffman R. J., Winterton R. C. Non-aqueous Electrochemistry of Magnesium: Applications to Energy Storage. J. Electrochem. Soc., 1990, vol. 137, no. 3, pp. 775–780. https://doi.org/10.1149/1.2086553
- Liang Y., Feng R., Yang S., Ma H., Liang J., Chen J. Rechargeable Mg Batteries with Graphene-like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode. Adv. Mater., 2011, vol. 23, iss. 5, pp. 640–643. https://doi.org/10.1002/adma.201003560
- Li X.-L., Li Y.-D. MoS2 Nanostructures : Synthesis and Electrochemical Mg2+ Intercalation. J. Phys. Chem. B, 2004, 108, no. 37, pp. 13893–13900. https://doi.org/10.1021/jp0367575
- Sun X., Bonnick P., Duffort V., Liu M., Rong Z., Persson K. A., Ceder G., Nazar L. F. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci., 2016, vol. 9, pp. 2273. https://doi.org/10.1039/C6EE00724D
- Amir N., Vestfrid Y., Chusid O., Gofer Y., Aurbach D. Progress in non-aqueous magnesium electrochemistry // J. Power Sources, 2007, vol. 174, iss. 2, pp. 1234–1240. https://doi.org/10.1016/j.jpowsour.2007.06.206
- Pan B., Huang J., Feng Zh., Zeng L., He M., Zhang L., Vaughey J. T., Bedzyk M. J., Fenter P., Zhang Z., Burrell A. K., Liao C. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater., 2016, vol. 6, iss. 14, pp. 1600140. https://doi.org/10.1002/aenm.201600140
- Pan B., Zhou D., Huang J., Zhang L., Burrell A. K., Vaughey J. T., Zhang Zh., Liao Ch. 2,5-Dimethoxy-1,4-Benzoquinone (DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries. J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. A580–A583. https://doi.org/10.1149/2.0021605jes
- Zhang Zh., Cui Z., Qiao L., Guan J., Xu H., Wang X., Hu P., Du H., Li S., Zhou X., Dong S., Liu Zh., Cui G., Chen L. Novel desing concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries. Adv. Energy Mater., 2017, № 1602055, pp. 1–10. https://doi.org/10.1002/aenm.201602055
- Xiahui Yao, Jingru Luo, Qi Dong, Dunwei Wang. A rechargeable Non-aqueous Mg-Br2 battery. Nano Energy, 2016, vol. 28, pp. 440–446. https://dx.doi.org/10.1016/j.nanoen.2016.09.003
- Tian H., Gao T., Li X., Wang X., Luo Ch., Fan X., Yang Ch., Suo L., Ma Zh., Han W., Wang Ch. High power rechargeable magnesium/iodine battery chemistry. Nature Communication, 2017, vol. 8, article no. 14083. https://doi.org/10.1038/ncomms1483
- Bulut S., Klose P., Huang M.-M., Weingärtner H., Dyson P. J., Laurenczy G., Friedrich Ch., Menz J., Kümmerer K., Krossing I. Synthesis of room-temperature ionic liquids with the weakly coordinating [Al(ORF)4]− anion [RF=C(H)(CF3)2] and the determination of their principal physical properties. Chem. Eur. J., 2010, vol. 16, pp. 13139–13154. https://doi.org/10.1002/chem.201000982