ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


electrolytes

Electrochemical characteristics of the La0.9Sr0.1Sс0.4Mn0.6O3 – δ cathode contacting the La0.9Sr0.1SсO3 – δ proton-conducting electrolyte

In this work, the material La0.9Sr0.1Sс0.4Mn0.6O3 – δ was synthesized using the citrate-nitrate method. The electrochemical characteristics of the material were studied using impedance spectroscopy on symmetric cells and compared with the model Pt cathode contacting the proton-conducting electrolyte. It was shown that the polarization resistance of the investigated material is approximately two orders lower than that of the model Pt electrode.

The effect of synthesis technique on the microstructure of doped lanthanum zirconate materials

High synthesis temperatures and sintering-active powders are required to obtain electrolyte materials with a pyrochlore structure. The smaller the particle size, the higher the density of the resulting samples is. The synthesis of highly dispersed oxide powders of doped lanthanum zirconate was carried out using a series of methods to determine the influence of experimental conditions on the microstructure of the resulting powders and ceramics.

Effect of lithium perchlorate concentration on lithium cation transference number in sulpholane solutions

To increase the accuracy of determining the lithium cation transference numbers we proposed to measure them at different values of the polarizing voltage and extrapolate the calculated values to the zero value of the polarizing voltage.

Modernization of the flash point tester PE-TVZ for determining fire safety of electrolyte systems of energy-intensive batteries

The flash point tester PE-TVZ was modernized. The sample volume was reduced from 70 to 5 ml. Mixing of the condensed and gas-vapor phases was done simultaneously. The mercury thermometer was replaced by an electronic one. The correctness of the flash point measurement by the modernized device was tested on the samples with the flash point in the range of 25–170°C.

Comparison of traditional organic solvents with phosphoric acid esters in lithium-ion and supercapacitor technologies

This work is dedicated to phosphoric acid esters working as solvents for lithium-ion and supercapacitor (SC) electrolyte. The electrical conductivity of electrolytes based on phosphoric acid esters, lithium salts, commonly used in lithium-ion batteries (LIB), and salts used in SC technology was measured. The thermodynamic stability of new electrolytes in comparison with other solvents used in chemical power sources technology was also estimated. It was shown that the thermodynamic stability of phosphoric acid ester increases in a homologous series.