For citation:
Vovchuk V. E., Mit'kin V. N., Galitskii A. A., Kuzovnikov A. M. Advanced non-destructive methods for state-of-charge diagnostics of the industrial and pilot lithium coin cells. Electrochemical Energetics, 2007, vol. 7, iss. 2, pp. 103-?. , EDN: MLJJGR
Advanced non-destructive methods for state-of-charge diagnostics of the industrial and pilot lithium coin cells
It was established one-, two and three-factor regression dependencies among discharge capacity С, short-circuit current I (SC), open circuit voltage U (OCV), internal resistance (Ri) and mass (m) for polynomials of a degree n(n = 1–4) in all sampling. The discharge capacity of ``fresh'' cell's forecasts a little bit better than after their long storage and magnitude of standard deviations for ``fresh'' CR2325 (2.5%) differ from ``old'' cells approximately twice (5.5%). For the predictive estimation of a discharge capacity an optimum variant is the three-dimensional regression on SC (Ri), OCV and weight of Li-cell. The optimum polynomial for the long-term storage cells with the expressed passivation phenomena looks as the function of relations of predicted capacity from SC, OCV and weight – C(I,m,U) = a0 + a1·I + a2·m + a3·U The offered method can be applied for deriving dependence of discharge capacity from an external load and for creation of accelerated tests technique of, including also the development of methods for nondestructive diagnostic of each made coin Li-cell's quality.
1. Sandifer J. R. // J. Appl. Electrochem. 1986. V. 16, № 2. P. 307.
2. Iyima T., Toyoguchi Y. Inform. Mater. Energy Theory Lite. 1986. V. 54, № 7. P. 600.
3. Kokorin A. N., Abolin O. E., Kedrinsky I. A. // Electrical Power Sources. 1997, № 2. P. 293.
4. Кедринский И. А., Дмитриенко В. Е., Поваров Ю. М., Грудянов И. И. Химические источники тока с литиевым электродом. Красноярск: Изд-во Красноярск. ун-та, 1983.
5. Frank H., Carter B. // J. Electrochem. Soc. 1982. V. 129, № 8. P. 316.
6. Pat. EPB № 0323539, МКИ G 01R 31/36. Method and apparatus for determining the state-of-charge of batteries, particularly lithium batteries.
7. Новое в технологии соединений фтора / Под ред. Н. Исикавы М.: Мир, 1984.
8. Watanabe N., Nakajima T., Touhara H. Graphite fluorids. Amsterdam; Oxford; N. Y.: Elsevier Science Publishers. 1988.
9. Wood J. L., Badashape R. B., Lagow R. J., Margrave J. L. // J. Phys. Chem. 1969. V. 73. P. 3139.
10. Mitkin V. N., Afanasjev V. L., Belosokhov A. I., Enin A. A., Galkin P. S., Gorev A. S., Gornostaev L. L., Makhnanov A. V., Mukhin V. V., Rozhkov V. V., Romashkin V. P., Sergeev V. P., Telezhkin V. V., Tibilov A. S., Yudanov N. F. // The novel generation of primary fluorocarbon-lithium cells: Meeting Abstracts, V. 96–1, abstr. 46. Spring Meeting Los Angeles, California, 1996, P. 55.
11. Митькин В. Н., Левченко Л. М., Галкин П. С. и др. Поликарбонофторид порошкообразный марок ФТ, ФС. Технические Условия ТУ 34 9735–0003–03533984–97. ИНХ СО РАН – ОАО НЗХК – АЭХК, Ангарск; Новосибирск, 1997.
12. Митькин В. Н. Новейшие электродные материалы для литиевой химической энергетики / Под ред. Ф. А. Кузнецова, В. В. Мухина. Новосибирск: Изд-во ОАО НЗХК, 2001.
13. Mitkin V. N., Galkin P. S., Denisova T. N., Filatov S. V., Shinelev E. A., Rozhkov V. V., Moukhin V. V. // Materials of Electrochemical Energy Storage and Conversion II – Batteries, Capacitors and Fuel Cells: MRS Symp. Proc. USA, Boston, Massachusets, 1998. P. 57.
14. Mitkin V., Filatov S., Galkin P., Denisova T., Koreneva O., Shinelev E., Alexandrov A., Moukhin V. // Proc. of «The Thirteen Annual Battery Conference on Applications and Advances». USA, California State University, Long Beach, California, 1998. P. 423.
15. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1984.
16. Taylor J. R. An introduction to error analysis. California University Science Books Mill Valley, 1982.
17. Vovtchuk V. E., Mitkin V. N., Kuzovnikov A. M., Dubrovin O. A., Monashev G. G., Karlov Yu.K. // New Materials of Electrochem. Systems. 2003. V. 6, № 2. P. 93.