For citation:
Opra D. P., Neumoin A. I., Sinebryukhov S. L., Sokolov A. A., Gnedenkov S. V. Na2Ti3O7 and α-Fe2O3-based hybrid nanomaterial for the negative electrode of sodium-ion batteries. Electrochemical Energetics, 2025, vol. 25, iss. 1, pp. 23-32. DOI: 10.18500/1608-4039-2025-25-1-23-32, EDN: UQLGAH
Na2Ti3O7 and α-Fe2O3-based hybrid nanomaterial for the negative electrode of sodium-ion batteries
Sodium trititanate, Na2Ti3O7, is considered to be a promising material for the negative electrode of reliable sodium-ion batteries. The advantages of Na2Ti3O7 include suitable electrode potential and cycling stability. However, this material is characterized by the limited specific capacity and low electronic conductivity. The current work is devoted to modification of Na2Ti3O7 by combining it with the high-capacity α-Fe2O3 phase. The structure, the composition, the morphological features, the electronic and the electrochemical properties of the obtained Na2Ti3O7–α-Fe2O3-based hybrid nanomaterial were studied in the work.
- Ko J. S., Doan-Nguyen V. V. T., Kim H.-S., Muller G. A., Serino A. C., Weiss P. S., Dunn B. S. Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. ACS Applied Materials & Interfaces, 2017, vol. 9, iss. 2, pp. 1416–1425. https://doi.org/10.1021/acsami.6b10790
- Dezhi Kong, Ye Wang, Shaozhuan Huang, Yew Von Lim, Jun Zhang, Linfeng Sun, Bo Liu, Tupei Chen, Pablo Valdivia y Alvarado, Hui Ying Yang. Surface Modification of Na2Ti3O7 Nanofibre Arrays by Ndoped Graphene Quantum Dots as Advanced Anodes for Sodium-ion Batteries with Ultra-stable and High-rate Capability. Journal of Materials Chemistry A, 2019, vol. 7, pp. 12751–12762. https://doi.org/10.1039/C9TA01641D
- Yang D., Guo W., Guo F., Zhu J., Wang G., Wang H., Yuan G., Ma S., Wang B. Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors. Journal of Energy Chemistry, 2024, vol. 90, pp. 652–664. https://doi.org/10.1016/j.jechem.2023.11.027
- Kim E. J., Kumar P. R., Gossage Z. T., Kubota K., Hosaka T., Tatara R., Komaba S. Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, vol. 13, iss. 21, pp. 6121–6158. https://doi.org/10.1039/D2SC00946C
- Wang Y., Zhu W., Guerfi A., Kim C., Zaghib K. Roles of Ti in Electrode Materials for Sodium-Ion Batteries. Frontiers in Energy Research, 2019, vol. 7, pp. 1–12. https://doi.org/10.3389/fenrg.2019.00028
- Wang W., Liu Y., Wu X., Wang J., Fu L., Zhu Y., Wu Y., Liu X. Advances of TiO2 as Negative Electrode Materials for Sodium-Ion Batteries. Advanced Materials Technologies, 2018, vol. 3, article no. 1800004. https://doi.org/10.1002/admt.201800004
- Doeff M. M., Cabana J., Shirpour M. Titanate Anodes for Sodium Ion Batteries. Journal of Inorganic and Organometallic Polymers and Materials, 2014, vol. 24, iss. 1, pp. 5–14. https://doi.org/10.1007/s10904-013-9977-8
- Stenina I. A., Kozina L. D., Kulova T. L., Skundin A. M., Chekannikov A. A., Yaroslavtsev A. B. Synthesis and ionic conduction of sodium titanate Na2Ti3O7. Russian Journal of Inorganic Chemistry, 2016, vol. 61, iss. 10, pp. 1235–1240. https://doi.org/10.1134/S003602361610020X
- Dynarowska M., Kotwiński J., Leszczynska M., Marzantowicz M., Krok F. Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics, 2017, vol. 301, pp. 35–42. https://doi.org/10.1016/j.ssi.2017.01.002
- Bi R., Zeng C., Ma T., Etogo A., Wang X., Zhang L. Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochimica Acta, 2018, vol. 284, pp. 287–293. https://doi.org/10.1016/j.electacta.2018.07.169
- Chen C.-C., Zhang N., Liu Y.-C., Wang Y.-J., Chen J. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2016, vol. 32, iss. 1, pp. 349–355. https://doi.org/10.3866/PKU.WHXB201512073
- Xie F., Zhang L., Su D., Jaroniec M., Qiao S. Na2Ti3O7@N-Doped Carbon Hollow Spheres for Sodium-Ion Batteries with Excellent Rate Performance. Advanced Materials, 2017, vol. 1700989, pp. 1–6. https://doi.org/10.1002/adma.201700989
- Chen Z., Lu L., Gao Y., Zhang Q., Zhang C., Sun C., Chen X. Effects of F-Doping on the Electrochemical Performance of Na2Ti3O7 as an Anode for SodiumIon Batteries. Materials, 2018, vol. 11, iss. 11, article no. 2206. https://doi.org/10.3390/ma11112206
- Chen J., Zhou X., Mei C., Xu J., Wong C. P. Improving the sodiation performance of Na2Ti3O7 through Nb-doping. Electrochimica Acta, 2017, vol. 224, pp. 446–451. https://doi.org/10.1016/j.electacta.2016.12.094
- Xia J., Zhao H., Pang W. K., Yin Z., Zhou B., He G., Guo Z., Du Y. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodiumion batteries. Chemical Science, 2018, vol. 9, iss. 14, pp. 3421–3425. https://doi.org/10.1039/c7sc05185a
- Song T., Chen H., Xu Q., Liu H., Wang Y.-G., Xia Y. Black Phosphorus Stabilizing Na2Ti3O7/C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, vol. 10, iss. 43, pp. 37163–37171. https://doi.org/10.1021/acsami.8b14971
- Wang S., Cao F., Li Y., Zhang Z., Zhou D., Yang Y., Tang Z. MoS2-Coupled Carbon Nanosheets Encapsulated on Sodium Titanate Nanowires as SuperDurable Anode Material for Sodium-Ion Batteries. Advanced Science, 2019, vol. 6, iss. 10, article no. 1900028. https://doi.org/10.1002/advs.201900028
- Wu Y., Wu J., Zhang S., Zhu L., Yan Z., Cao X. Enhanced sodium-ion storage with Fe3O4@Na2Ti3O7 nanoleafs. Journal of Solid State Chemistry, 2021, vol. 300, article no. 122247. https://doi.org/10.1016/j.jssc.2021.122247
- Li T., Qin A., Yang L., Chen J., Wang Q., Zhang D., Yang H. In Situ Grown Fe2O3 Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, vol. 9, iss. 23, pp. 19900–19907. https://doi.org/10.1021/acsami.7b04407
- Song J., Maulana A. Y., Kim H., Yun B., Gim H., Jeong Y., An N., Futalan C. M., Kim J. Ndoped graphitic carbon coated Fe2O3 using dopamine as an anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, vol. 921, article no. 166082. https://doi.org/10.1016/j.jallcom.2022.166082
- Zhu G., Zhang X., Li Y., Zhao G., Xu H., Jin Z. A carbon-coated shuttle-like Fe2O3/Fe1−xS heterostructure derived from metal–organic frameworks with high pseudocapacitance for ultrafast lithium storage. Nanoscale Advances, 2020, vol. 2, iss. 11, pp. 5201–5208. https://doi.org/10.1039/D0NA00372G
- Kim G.-S., Kim Y.-S., Seo H.-K., Shin H.-S. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process. Korean Journal of Chemical Engineering, 2006, vol. 23, iss. 6, pp. 1037–1045. https://doi.org/10.1007/s11814-006-0027-x
- Ferreira O. P., Souza Filho A. G., Mendes Filho J., Alves O. L. Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. Journal of the Brazilian Chemical Society, 2006, vol. 17, iss. 2, pp. 393–402. https://doi.org/10.1590/S0103-50532006000200025
- Seo O., Tayal A., Kim J., Song C., Chen Y., Hiroi S., Katsuya Y., Ina T., Sakata O., Ikeya Y., Takano S., Matsuda A., Yoshimoto M. Tuning of structural, optical band gap, and electrical properties of room-temperaturegrown epitaxial thin films through the Fe2O3:NiO ratio. Scientific Reports, 2019, vol. 9, iss. 1, article no. 4304. https://doi.org/10.1038/s41598-019-41049-9
- Kulova T. L., Skundin A. M. The role of vinylene carbonate in functioning of lithium-ion and sodiumion batteries. Electrochemical Energetics, 2021, vol. 21, no. 3, pp. 117–131 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-3-117-131
- Koshkina A. A., Yaroslavtseva T. V., Urusova N. V., Reznitskikh O. G., Khrustalev M. A., Nefedova K. V., Zhuravlev V. D., Bushkova O. V. Lithium borates as a surface protective layer for lithiummanganese spinel. Electrochemical Energetics, 2024, vol. 24, no. 2, pp. 88–102 (in Russian). https://doi.org/10.18500/1608-4039-2024-24-2-88-102
- Liu Z., Zhang X., Huang D., Gao B., Ni C., Wang L., Ren Y., Wang J., Gou H., Wang G. Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 2020, vol. 379, article no. 122418. https://doi.org/10.1016/j.cej.2019.122418
- Li H., Xu L., Sitinamaluwa H., Wasalathilake K., Yan C. Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode. Composites Communications, 2016, vol. 1, pp. 48–53. https://doi.org/10.1016/j.coco.2016.09.004
- Kandula S., Bae J., Cho J., Son J. G. Gram-scale synthesis of rGO wrapped porous α-Fe2O3 as an advanced anode material for Na-ion batteries with superior cyclic stability. Composites Part B: Engineering, 2021, vol. 220, article no. 108995. https://doi.org/10.1016/j.compositesb.2021.108995