ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Opra D. P., Neumoin A. I., Sinebryukhov S. L., Sokolov A. A., Gnedenkov S. V. Na2Ti3O7 and α-Fe2O3-based hybrid nanomaterial for the negative electrode of sodium-ion batteries. Electrochemical Energetics, 2025, vol. 25, iss. 1, pp. 23-32. DOI: 10.18500/1608-4039-2025-25-1-23-32, EDN: UQLGAH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 33)
Language: 
Russian
Article type: 
Article
UDC: 
541.136
EDN: 
UQLGAH

Na2Ti3O7 and α-Fe2O3-based hybrid nanomaterial for the negative electrode of sodium-ion batteries

Autors: 
Opra Denis Pavlovich, Institute of Chemistry of Far-Easter Branch of RAS
Neumoin Anton I., Institute of Chemistry of Far-Easter Branch of RAS
Sinebryukhov Sergei Leonidovich, Institute of Chemistry of Far-Easter Branch of RAS
Sokolov Aleksandr Aleksandrovich, Institute of Chemistry of Far-Easter Branch of RAS
Gnedenkov Sergei Vasil'evich, Institute of Chemistry of Far-Easter Branch of RAS
Abstract: 

Sodium trititanate, Na2Ti3O7, is considered to be a promising material for the negative electrode of reliable sodium-ion batteries. The advantages of Na2Ti3O7 include suitable electrode potential and cycling stability. However, this material is characterized by the limited specific capacity and low electronic conductivity. The current work is devoted to modification of Na2Ti3O7 by combining it with the high-capacity α-Fe2O3 phase. The structure, the composition, the morphological features, the electronic and the electrochemical properties of the obtained Na2Ti3O7–α-Fe2O3-based hybrid nanomaterial were studied in the work.

Acknowledgments: 
This work was carried out within the scopes of the grant No. 19-73-10017 from the Russian Science Foundation. The electron microscopic characterization was performed under state assignment (theme No. FWFN(0205)-2022-0004) of the Institute of Chemistry FEB RAS at the “Far Eastern Center for Electron Microscopy” (A. V. Zhirmunsky National Scientific Center of Marine Biology FEB RAS), “Biotechnology and Genetic Engineering Research Center” (Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS), and “Advanced Imaging Core Faculty” (Skolkovo Institute of Science and Technology).
Reference: 
  1. Ko J. S., Doan-Nguyen V. V. T., Kim H.-S., Muller G. A., Serino A. C., Weiss P. S., Dunn B. S. Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. ACS Applied Materials & Interfaces, 2017, vol. 9, iss. 2, pp. 1416–1425. https://doi.org/10.1021/acsami.6b10790
  2. Dezhi Kong, Ye Wang, Shaozhuan Huang, Yew Von Lim, Jun Zhang, Linfeng Sun, Bo Liu, Tupei Chen, Pablo Valdivia y Alvarado, Hui Ying Yang. Surface Modification of Na2Ti3O7 Nanofibre Arrays by Ndoped Graphene Quantum Dots as Advanced Anodes for Sodium-ion Batteries with Ultra-stable and High-rate Capability. Journal of Materials Chemistry A, 2019, vol. 7, pp. 12751–12762. https://doi.org/10.1039/C9TA01641D
  3. Yang D., Guo W., Guo F., Zhu J., Wang G., Wang H., Yuan G., Ma S., Wang B. Vacancy defect MoSeTe embedded in N and F co-doped carbon skeleton for high performance sodium ion batteries and hybrid capacitors. Journal of Energy Chemistry, 2024, vol. 90, pp. 652–664. https://doi.org/10.1016/j.jechem.2023.11.027
  4. Kim E. J., Kumar P. R., Gossage Z. T., Kubota K., Hosaka T., Tatara R., Komaba S. Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, vol. 13, iss. 21, pp. 6121–6158. https://doi.org/10.1039/D2SC00946C
  5. Wang Y., Zhu W., Guerfi A., Kim C., Zaghib K. Roles of Ti in Electrode Materials for Sodium-Ion Batteries. Frontiers in Energy Research, 2019, vol. 7, pp. 1–12. https://doi.org/10.3389/fenrg.2019.00028
  6. Wang W., Liu Y., Wu X., Wang J., Fu L., Zhu Y., Wu Y., Liu X. Advances of TiO2 as Negative Electrode Materials for Sodium-Ion Batteries. Advanced Materials Technologies, 2018, vol. 3, article no. 1800004. https://doi.org/10.1002/admt.201800004
  7. Doeff M. M., Cabana J., Shirpour M. Titanate Anodes for Sodium Ion Batteries. Journal of Inorganic and Organometallic Polymers and Materials, 2014, vol. 24, iss. 1, pp. 5–14. https://doi.org/10.1007/s10904-013-9977-8
  8. Stenina I. A., Kozina L. D., Kulova T. L., Skundin A. M., Chekannikov A. A., Yaroslavtsev A. B. Synthesis and ionic conduction of sodium titanate Na2Ti3O7. Russian Journal of Inorganic Chemistry, 2016, vol. 61, iss. 10, pp. 1235–1240. https://doi.org/10.1134/S003602361610020X
  9. Dynarowska M., Kotwiński J., Leszczynska M., Marzantowicz M., Krok F. Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics, 2017, vol. 301, pp. 35–42. https://doi.org/10.1016/j.ssi.2017.01.002
  10. Bi R., Zeng C., Ma T., Etogo A., Wang X., Zhang L. Encapsulated hollow Na2Ti3O7 spheres in reduced graphene oxide films for flexible sodium-ion batteries. Electrochimica Acta, 2018, vol. 284, pp. 287–293. https://doi.org/10.1016/j.electacta.2018.07.169
  11. Chen C.-C., Zhang N., Liu Y.-C., Wang Y.-J., Chen J. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2016, vol. 32, iss. 1, pp. 349–355. https://doi.org/10.3866/PKU.WHXB201512073
  12. Xie F., Zhang L., Su D., Jaroniec M., Qiao S. Na2Ti3O7@N-Doped Carbon Hollow Spheres for Sodium-Ion Batteries with Excellent Rate Performance. Advanced Materials, 2017, vol. 1700989, pp. 1–6. https://doi.org/10.1002/adma.201700989
  13. Chen Z., Lu L., Gao Y., Zhang Q., Zhang C., Sun C., Chen X. Effects of F-Doping on the Electrochemical Performance of Na2Ti3O7 as an Anode for SodiumIon Batteries. Materials, 2018, vol. 11, iss. 11, article no. 2206. https://doi.org/10.3390/ma11112206
  14. Chen J., Zhou X., Mei C., Xu J., Wong C. P. Improving the sodiation performance of Na2Ti3O7 through Nb-doping. Electrochimica Acta, 2017, vol. 224, pp. 446–451. https://doi.org/10.1016/j.electacta.2016.12.094
  15. Xia J., Zhao H., Pang W. K., Yin Z., Zhou B., He G., Guo Z., Du Y. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodiumion batteries. Chemical Science, 2018, vol. 9, iss. 14, pp. 3421–3425. https://doi.org/10.1039/c7sc05185a
  16. Song T., Chen H., Xu Q., Liu H., Wang Y.-G., Xia Y. Black Phosphorus Stabilizing Na2Ti3O7/C Each Other with an Improved Electrochemical Property for Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2018, vol. 10, iss. 43, pp. 37163–37171. https://doi.org/10.1021/acsami.8b14971
  17. Wang S., Cao F., Li Y., Zhang Z., Zhou D., Yang Y., Tang Z. MoS2-Coupled Carbon Nanosheets Encapsulated on Sodium Titanate Nanowires as SuperDurable Anode Material for Sodium-Ion Batteries. Advanced Science, 2019, vol. 6, iss. 10, article no. 1900028. https://doi.org/10.1002/advs.201900028
  18. Wu Y., Wu J., Zhang S., Zhu L., Yan Z., Cao X. Enhanced sodium-ion storage with Fe3O4@Na2Ti3O7 nanoleafs. Journal of Solid State Chemistry, 2021, vol. 300, article no. 122247. https://doi.org/10.1016/j.jssc.2021.122247
  19. Li T., Qin A., Yang L., Chen J., Wang Q., Zhang D., Yang H. In Situ Grown Fe2O3 Single Crystallites on Reduced Graphene Oxide Nanosheets as High Performance Conversion Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, vol. 9, iss. 23, pp. 19900–19907. https://doi.org/10.1021/acsami.7b04407
  20. Song J., Maulana A. Y., Kim H., Yun B., Gim H., Jeong Y., An N., Futalan C. M., Kim J. Ndoped graphitic carbon coated Fe2O3 using dopamine as an anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2022, vol. 921, article no. 166082. https://doi.org/10.1016/j.jallcom.2022.166082
  21. Zhu G., Zhang X., Li Y., Zhao G., Xu H., Jin Z. A carbon-coated shuttle-like Fe2O3/Fe1−xS heterostructure derived from metal–organic frameworks with high pseudocapacitance for ultrafast lithium storage. Nanoscale Advances, 2020, vol. 2, iss. 11, pp. 5201–5208. https://doi.org/10.1039/D0NA00372G
  22. Kim G.-S., Kim Y.-S., Seo H.-K., Shin H.-S. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process. Korean Journal of Chemical Engineering, 2006, vol. 23, iss. 6, pp. 1037–1045. https://doi.org/10.1007/s11814-006-0027-x
  23. Ferreira O. P., Souza Filho A. G., Mendes Filho J., Alves O. L. Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. Journal of the Brazilian Chemical Society, 2006, vol. 17, iss. 2, pp. 393–402. https://doi.org/10.1590/S0103-50532006000200025
  24. Seo O., Tayal A., Kim J., Song C., Chen Y., Hiroi S., Katsuya Y., Ina T., Sakata O., Ikeya Y., Takano S., Matsuda A., Yoshimoto M. Tuning of structural, optical band gap, and electrical properties of room-temperaturegrown epitaxial thin films through the Fe2O3:NiO ratio. Scientific Reports, 2019, vol. 9, iss. 1, article no. 4304. https://doi.org/10.1038/s41598-019-41049-9
  25. Kulova T. L., Skundin A. M. The role of vinylene carbonate in functioning of lithium-ion and sodiumion batteries. Electrochemical Energetics, 2021, vol. 21, no. 3, pp. 117–131 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-3-117-131
  26. Koshkina A. A., Yaroslavtseva T. V., Urusova N. V., Reznitskikh O. G., Khrustalev M. A., Nefedova K. V., Zhuravlev V. D., Bushkova O. V. Lithium borates as a surface protective layer for lithiummanganese spinel. Electrochemical Energetics, 2024, vol. 24, no. 2, pp. 88–102 (in Russian). https://doi.org/10.18500/1608-4039-2024-24-2-88-102
  27. Liu Z., Zhang X., Huang D., Gao B., Ni C., Wang L., Ren Y., Wang J., Gou H., Wang G. Confined seeds derived sodium titanate/graphene composite with synergistic storage ability toward high performance sodium ion capacitors. Chemical Engineering Journal, 2020, vol. 379, article no. 122418. https://doi.org/10.1016/j.cej.2019.122418
  28. Li H., Xu L., Sitinamaluwa H., Wasalathilake K., Yan C. Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode. Composites Communications, 2016, vol. 1, pp. 48–53. https://doi.org/10.1016/j.coco.2016.09.004
  29. Kandula S., Bae J., Cho J., Son J. G. Gram-scale synthesis of rGO wrapped porous α-Fe2O3 as an advanced anode material for Na-ion batteries with superior cyclic stability. Composites Part B: Engineering, 2021, vol. 220, article no. 108995. https://doi.org/10.1016/j.compositesb.2021.108995 
Received: 
26.09.2024
Accepted: 
20.01.2025
Published: 
28.02.2025