ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gryzlov D. Y., Kulova T. L., Skundin A. M. Study of the reversible electrochemical insertion of lithium into boron. Electrochemical Energetics, 2022, vol. 22, iss. 2, pp. 100-106. DOI: 10.18500/1608-4039-2022-22-2-100-106, EDN: SLIBHX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 121)
Language: 
Russian
Article type: 
Article
UDC: 
544.6:621.355
EDN: 
SLIBHX

Study of the reversible electrochemical insertion of lithium into boron

Autors: 
Gryzlov Dmitrii Yur'evich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kulova Tatiana L'vovna, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Skundin Alexander Mordukhaevich, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Abstract: 

The reversible insertion of lithium into electrodes based on amorphous boron has been studied. The reversible capacity upon the lithium insertion has been found to be about 750 mA⋅h/g. The most efficient in terms of specific capacity are the electrodes containing graphene as a conductive additive.

Reference: 
  1. Dallek S., Ernst D. W., Larrick F. B. Thermal Analysis of Lithium-Boron Alloys. J. Electrochem. Soc., 1979, vol. 126, pp. 866–870. https://doi.org/10.1149/1.2129157
  2. Wang F. E., Mitchell M. A., Sutula R. A., Holden J. R., Bennet L. H. Crystal-structure study of a new compound Li5B4. J. Less-Common Met., 1978, vol. 57, pp. 237–251. https://doi.org/10.1016/0022-5088(78)90219-9
  3. James S. D., DeVries L. E. Structure and Anodic Discharge Behavior of Lithium-Boron Alloys in the LiCl-KCl Eutectic Melt. J. Electrochem. Soc., 1976, vol. 123, pp. 321–327. https://doi.org/10.1149/1.2132818
  4. Meden A., Mavri J., Bele M., Pejovnik S. Dissolution of Boron in Lithium Melt. J. Phys. Chem., 1995, vol. 99, pp. 4252–4260. https://doi.org/10.1021/j100012a055
  5. Mortazavi B., Dianat A., Rahaman O., Cuniberti G., Rabczuk T. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study. J. Power Sources, 2016, vol. 329, pp. 456–461. https://doi.org/10.1016/j.jpowsour.2016.08.109
  6. Jiang N., Li B., Ning F., Xia D. All boron-based 2D material as anode material in Li-ion batteries. J. Energy Chem., 2018, vol. 27, pp. 1651–1654. https://doi.org/10.1016/j.jechem.2018.01.026
  7. Ding X., Lu X., Fu Z., Li H. Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. Electrochim. Acta, 2013, vol. 87, pp. 230–235. https://doi.org/10.1016/j.electacta.2011.03.078
  8. Rodrı́guez E., Cameán I., Garcı́a R., Garcı́a A. B. Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries. Electrochim. Acta, 2011, vol. 56, pp. 5090–5094. https://doi.org/10.1016/j.electacta.2011.03.078
  9. Zhou X., Ma L., Yang J., Huang B., Zou Y., Tang J., Xie J., Wang S., Chen G. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J. Electroanalyt. Chem., 2013, vol. 698, pp. 39–44. https://doi.org/10.1016/j.jelechem.2013.03.019
  10. Zhang L., Xia G., Guo Z., Li X., Sun D., Yu X. Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int. J. Hydrogen Energy, 2016, vol. 41, pp. 14252–14260. https://doi.org/10.1016/j.ijhydene.2016.06.016
  11. Way B. M., Dahn J. R. The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Lix(BzC1 − z)6. J. Electrochem. Soc., 1995, vol. 141, pp. 907–912. https://doi.org/10.1149/1.2054856
  12. Tanaka U., Sogabe T., Sakagoshi H., Ito M., Tojo T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon, 2001, vol. 39, pp. 931–936. https://doi.org/10.1016/S0008-6223(00)00211-6
  13. Liu T., Luo R., Yoon S.-H., Mochida I. Anode performance of boron-doped graphites prepared from shot and sponge cokes. J. Power Sources, 2010, vol. 195, pp. 1714–1719. https://doi.org/10.1016/j.jpowsour.2009.08.104
  14. Yin G., Gao Y., Shi P., Cheng X., Aramata A. The effect of boron doping on lithium intercalation performance of boron-doped carbon materials. Mater. Chem. Phys., 2003, vol. 80, pp. 94–101. https://doi.org/10.1016/S0254-0584(02)00337-1
  15. Kim C., Fujino T., Miyashita K., Hayashi T., Endo M., Dresselhaus M. S. Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads. J. Electrochem. Soc., 2000, vol. 147, pp. 1257–1264. https://doi.org/10.1149/1.1393346
  16. Kim C., Fujino T., Hayashi T., Endo M., Dresselhaus M. S. Structural and Electrochemical Properties of Pristine and B-Doped Materials for the Anode of Li-Ion Secondary Batteries. J. Electrochem. Soc., 2000, vol. 147, pp. 1265–1270. https://doi.org/10.1149/1.1393347
  17. Morita T., Takami N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion. Electrochim. Acta, 2004, vol. 49, pp. 2591–2599. https://doi.org/10.1016/j.electacta.2004.02.010
  18. Endo M., Kim C., Karaki T., Nishimura Y., Matthews M. J., Brown S. D. M., Dresselhaus M. S. Anode performance of a Li in battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon, 1999, vol. 37, pp. 561–568. https://doi.org/10.1016/S0008-6223(98)00222-X
  19. Fujimoto H., Mabuchi A., Natarajan C., Kasuh T. Properties of graphite prepared from boron-doped pitch as an anode for a rechargeable Li ion battery. Carbon, 2002, vol. 40, pp. 567–574. https://doi.org/10.1016/S0008-6223(01)00152-X
  20. Hamada T., Suzuki K., Kohno T., Sugiura T. Coke powder heat-treated with boron oxide using an Acheson furnace for lithium battery anodes. Carbon, 2002, vol. 40, pp. 2317–2322. https://doi.org/10.1016/S0008-6223(02)00122-7
  21. Chen M.-H., Wu G.-T., Zhu G.-M., You J.-K., Lin Z.-G. Characterization and electrochemical investigation of boron-doped mesocarbon microbead anode materials for lithium ion batteries. J. Solid State Electrochem., 2002, vol. 6, pp. 420–427. https://doi.org/10.1007/s100080100244
  22. Xiang H.-Q., Fang S.-B., Jiang Y.-Y. Carbons prepared from boron-containing polymers as host materials for lithium insertion. Solid State Ionics, 2002, vol. 148, pp. 35–43. https://doi.org/10.1016/S0167-2738(02)00108-X
  23. Zhao X., Sanderson R. J., Dunlap R. A., Obrovac M. N. The Electrochemistry of Sputtered and Ball Milled C1 − xBx (0 < y < 0.60) Alloys in Li and Na Cells. Electrochim. Acta, 2016, vol. 209, pp. 285–292. https://doi.org/10.1016/j.electacta.2016.04.188
  24. Morita M., Hanada T., Tsutsumi H., Matsuda Y. and Kawaguchi M. Layered-Structure BC2N as a Negative Electrode Matrix for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1992, vol. 139, pp. 1227–1230. https://doi.org/10.1149/1.2069387
  25. Ishikawa M., Nakamura T., Morita M., Matsuda Y., Tsujioka S., Kawashima T. Boron-carbon-nitrogen compounds as negative electrode matrices for rechargeable lithium battery systems. J. Power Sources, 1995, vol. 55, pp. 127–130. https://doi.org/10.1016/0378-7753(94)02173-Z
Received: 
23.05.2022
Accepted: 
23.06.2022
Published: 
07.11.2022