For citation:
Gryzlov D. Y., Kulova T. L., Skundin A. M. Study of the reversible electrochemical insertion of lithium into boron. Electrochemical Energetics, 2022, vol. 22, iss. 2, pp. 100-106. DOI: 10.18500/1608-4039-2022-22-2-100-106, EDN: SLIBHX
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 121)
Language:
Russian
Heading:
Article type:
Article
UDC:
544.6:621.355
EDN:
SLIBHX
Study of the reversible electrochemical insertion of lithium into boron
Autors:
Gryzlov Dmitrii Yur'evich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kulova Tatiana L'vovna, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Skundin Alexander Mordukhaevich, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Abstract:
The reversible insertion of lithium into electrodes based on amorphous boron has been studied. The reversible capacity upon the lithium insertion has been found to be about 750 mA⋅h/g. The most efficient in terms of specific capacity are the electrodes containing graphene as a conductive additive.
Key words:
Reference:
- Dallek S., Ernst D. W., Larrick F. B. Thermal Analysis of Lithium-Boron Alloys. J. Electrochem. Soc., 1979, vol. 126, pp. 866–870. https://doi.org/10.1149/1.2129157
- Wang F. E., Mitchell M. A., Sutula R. A., Holden J. R., Bennet L. H. Crystal-structure study of a new compound Li5B4. J. Less-Common Met., 1978, vol. 57, pp. 237–251. https://doi.org/10.1016/0022-5088(78)90219-9
- James S. D., DeVries L. E. Structure and Anodic Discharge Behavior of Lithium-Boron Alloys in the LiCl-KCl Eutectic Melt. J. Electrochem. Soc., 1976, vol. 123, pp. 321–327. https://doi.org/10.1149/1.2132818
- Meden A., Mavri J., Bele M., Pejovnik S. Dissolution of Boron in Lithium Melt. J. Phys. Chem., 1995, vol. 99, pp. 4252–4260. https://doi.org/10.1021/j100012a055
- Mortazavi B., Dianat A., Rahaman O., Cuniberti G., Rabczuk T. Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study. J. Power Sources, 2016, vol. 329, pp. 456–461. https://doi.org/10.1016/j.jpowsour.2016.08.109
- Jiang N., Li B., Ning F., Xia D. All boron-based 2D material as anode material in Li-ion batteries. J. Energy Chem., 2018, vol. 27, pp. 1651–1654. https://doi.org/10.1016/j.jechem.2018.01.026
- Ding X., Lu X., Fu Z., Li H. Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. Electrochim. Acta, 2013, vol. 87, pp. 230–235. https://doi.org/10.1016/j.electacta.2011.03.078
- Rodrı́guez E., Cameán I., Garcı́a R., Garcı́a A. B. Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries. Electrochim. Acta, 2011, vol. 56, pp. 5090–5094. https://doi.org/10.1016/j.electacta.2011.03.078
- Zhou X., Ma L., Yang J., Huang B., Zou Y., Tang J., Xie J., Wang S., Chen G. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J. Electroanalyt. Chem., 2013, vol. 698, pp. 39–44. https://doi.org/10.1016/j.jelechem.2013.03.019
- Zhang L., Xia G., Guo Z., Li X., Sun D., Yu X. Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int. J. Hydrogen Energy, 2016, vol. 41, pp. 14252–14260. https://doi.org/10.1016/j.ijhydene.2016.06.016
- Way B. M., Dahn J. R. The Effect of Boron Substitution in Carbon on the Intercalation of Lithium in Lix(BzC1 − z)6. J. Electrochem. Soc., 1995, vol. 141, pp. 907–912. https://doi.org/10.1149/1.2054856
- Tanaka U., Sogabe T., Sakagoshi H., Ito M., Tojo T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon, 2001, vol. 39, pp. 931–936. https://doi.org/10.1016/S0008-6223(00)00211-6
- Liu T., Luo R., Yoon S.-H., Mochida I. Anode performance of boron-doped graphites prepared from shot and sponge cokes. J. Power Sources, 2010, vol. 195, pp. 1714–1719. https://doi.org/10.1016/j.jpowsour.2009.08.104
- Yin G., Gao Y., Shi P., Cheng X., Aramata A. The effect of boron doping on lithium intercalation performance of boron-doped carbon materials. Mater. Chem. Phys., 2003, vol. 80, pp. 94–101. https://doi.org/10.1016/S0254-0584(02)00337-1
- Kim C., Fujino T., Miyashita K., Hayashi T., Endo M., Dresselhaus M. S. Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads. J. Electrochem. Soc., 2000, vol. 147, pp. 1257–1264. https://doi.org/10.1149/1.1393346
- Kim C., Fujino T., Hayashi T., Endo M., Dresselhaus M. S. Structural and Electrochemical Properties of Pristine and B-Doped Materials for the Anode of Li-Ion Secondary Batteries. J. Electrochem. Soc., 2000, vol. 147, pp. 1265–1270. https://doi.org/10.1149/1.1393347
- Morita T., Takami N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion. Electrochim. Acta, 2004, vol. 49, pp. 2591–2599. https://doi.org/10.1016/j.electacta.2004.02.010
- Endo M., Kim C., Karaki T., Nishimura Y., Matthews M. J., Brown S. D. M., Dresselhaus M. S. Anode performance of a Li in battery based on graphitized and B-doped milled mesophase pitch-based carbon fibers. Carbon, 1999, vol. 37, pp. 561–568. https://doi.org/10.1016/S0008-6223(98)00222-X
- Fujimoto H., Mabuchi A., Natarajan C., Kasuh T. Properties of graphite prepared from boron-doped pitch as an anode for a rechargeable Li ion battery. Carbon, 2002, vol. 40, pp. 567–574. https://doi.org/10.1016/S0008-6223(01)00152-X
- Hamada T., Suzuki K., Kohno T., Sugiura T. Coke powder heat-treated with boron oxide using an Acheson furnace for lithium battery anodes. Carbon, 2002, vol. 40, pp. 2317–2322. https://doi.org/10.1016/S0008-6223(02)00122-7
- Chen M.-H., Wu G.-T., Zhu G.-M., You J.-K., Lin Z.-G. Characterization and electrochemical investigation of boron-doped mesocarbon microbead anode materials for lithium ion batteries. J. Solid State Electrochem., 2002, vol. 6, pp. 420–427. https://doi.org/10.1007/s100080100244
- Xiang H.-Q., Fang S.-B., Jiang Y.-Y. Carbons prepared from boron-containing polymers as host materials for lithium insertion. Solid State Ionics, 2002, vol. 148, pp. 35–43. https://doi.org/10.1016/S0167-2738(02)00108-X
- Zhao X., Sanderson R. J., Dunlap R. A., Obrovac M. N. The Electrochemistry of Sputtered and Ball Milled C1 − xBx (0 < y < 0.60) Alloys in Li and Na Cells. Electrochim. Acta, 2016, vol. 209, pp. 285–292. https://doi.org/10.1016/j.electacta.2016.04.188
- Morita M., Hanada T., Tsutsumi H., Matsuda Y. and Kawaguchi M. Layered-Structure BC2N as a Negative Electrode Matrix for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1992, vol. 139, pp. 1227–1230. https://doi.org/10.1149/1.2069387
- Ishikawa M., Nakamura T., Morita M., Matsuda Y., Tsujioka S., Kawashima T. Boron-carbon-nitrogen compounds as negative electrode matrices for rechargeable lithium battery systems. J. Power Sources, 1995, vol. 55, pp. 127–130. https://doi.org/10.1016/0378-7753(94)02173-Z
Received:
23.05.2022
Accepted:
23.06.2022
Published:
07.11.2022
Journal issue: