Для цитирования:
Черендина О. В., Лаптев Е. Д., Шубникова Е. В., Тропин Е. С., Брагина О. А., Немудрый А. П. Влияние способа получения La0.6Sr0.2Ba0.2Fe0.7Co0.2Ni0.1O3−δ микротрубчатых мембран на микроструктуру // Электрохимическая энергетика. 2025. Т. 25, вып. 4. С. 183-188. DOI: 10.18500/1608-4039-2025-25-4-183-188, EDN: HXFLLO
Влияние способа получения La0.6Sr0.2Ba0.2Fe0.7Co0.2Ni0.1O3−δ микротрубчатых мембран на микроструктуру
Микротрубчатые мембраны состава La0.6Sr0.2Ba0.2Fe0.7Ni0.1Co0.2O3−δ были получены методами фазовой инверсии и погружения в суспензию с последующим спеканием на воздухе. Аттестация полученных микротрубчатых мембран осуществлялась методами рентгенофазового и рентгеноструктурного анализа, а также методом сканирующей электронной микроскопии. Проведен подбор оптимальной температуры спекания, которая определялась целевым применением микротрубчатых мембран и соответствующими требованиями к их микроструктуре. Сравнительный анализ осуществлялся по следующим параметрам: внутренний и внешний диаметр, усадка, размеры газоплотного и пористого слоев.
- Wei Y., Yang W., Caro J., Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors // Chem. Eng. J. 2013. Vol. 220. P. 185– 203. https://doi.org/10.1016/j.cej.2013.01.048
- Tan X., Shi L., Hao G., Meng B., Liu S. La0.7Sr0.3FeO3−α perovskite hollow fiber membranes for oxygen permeation and methane conversion // Sep. Purif. Technol. 2012. Vol. 96. P. 89–97. https://doi.org/10.1016/j.seppur.2012.05.012
- Cherendina O. V., Shubnikova E. V., Khokhlova M. O., Bragina O. A., Nemudry A. P. Dual-phase La0.5Sr0.5Fe0.8Co0.2O3−δ–Ce0.8Sm0.2O2−δ hollow fiber membranes for oxygen separation // J. Alloys Compd. 2024. Vol. 972. Art. 172838. https://doi.org/10.1016/j.jallcom.2023.172838
- Shubnikova E. V., Bragina O. A., Nemudry A. P. Mixed conducting molybdenum doped BSCF materials // J. Ind. Eng. Chem. 2018. Vol. 59. P. 242–250. https://doi.org/10.1016/j.jiec.2017.10.025
- Нифталиева Н. В., Шубникова Е. В., Немудрый А. П. Влияние технологических параметров метода фазовой инверсии на морфологию микротрубчатых мембран // Химия в интересах устойчивого развития. 2018. Т. 26, № 5. С. 551–556.
- Bragina O. A., Nemudry A. P. Cobalt-free SrFe1−xMoxO3−δ perovskite hollow fiber membranes for oxygen separation // J. Eur. Ceram. Soc. 2023. Vol. 43, № 8. P. 3421–3426. https://doi.org/10.1016/j.jeurceramsoc.2023.02.021
- Hashim S. M., Mohamed A. R., Bhatia S. Preparation and characterization of La0.6Sr0.4Co0.2Fe0.8O3−δ thin-film membrane on porous support by dip-coating method // J. Sol-Gel Sci. Technol. 2011. Vol. 59, № 3. P. 505–512. https://doi.org/10.1007/s10971-011-2520-x
- Meng X., Ding W., Jin R., Wang H., Gai Y., Ji F., Ge Y., Xie D. Two-step fabrication of BaCo0.7Fe0.2Nb0.1O3−δ asymmetric oxygen permeable membrane by dip coating // J. Membr. Sci. 2014. Vol. 450. P. 291–298. https://doi.org/10.1016/j.memsci.2013.09.009
- Tan X., Liu Y., Li K. Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion/sintering technique // Ind. Eng. Chem. Res. 2005. Vol. 44, № 1. P. 61–66. https://doi.org/10.1021/ie049891l
- Wang Z., Yang N., Meng B., Tan X., Li K. Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3−α perovskite hollow-fiber membranes // Ind. Eng. Chem. Res. 2009. Vol. 48, № 1. P. 510–516. https://doi.org/10.1021/ie800861qф