ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Топливные элементы

In situ высокотемпературная рентгеновская дифракция оксидов La0.6Sr0.4Co1−xMoxO3−δ (x = 0.0–0.10), применяемых в качестве катодов твердооксидных топливных элементов

Зависимость термического расширения от состава и атмосферы для молибден-допированного кобальтита лантана-стронция La0.6Sr0.4Co1−xMoxO3−δ (x = 0–0.10) была изучена методом in situ высокотемпературной рентгеновской дифракции. Определены линейные коэффициенты термического расширения в температурном диапазоне 30–750°C на воздухе. Для всего ряда составов наблюдается линейная зависимость параметров элементарной ячейки от содержания молибдена, что подчиняется закону Вегарда и свидетельствует о формировании твердых растворов.

Исследование влияния содержания кобальта на устойчивость никелевых композиционных анодных материалов для твердооксидных топливных элементов в условиях повышенной влажности

В настоящей работе исследовано влияние влажности на деградацию микроструктуры никелевых металлокерамических композиционных материалов с содержанием кобальта 0, 10, 20, 40, 60% масс. в металлической фазе. Увеличение концентрации кобальта благоприятно сказывается на стабильности микроструктуры и электропроводности во времени, что говорит о перспективности подхода к модификации анодов твердооксидных топливных элементов на основе легирования их кобальтом.

Керамика на основе алюмомагнезиальной шпинели для твердооксидных топливных элементов

Методом горячего шликерного литья были получены детали из алюмомагнезиальной шпинели для керамической газовой системы для применения в высокотемпературных трубчатых твердооксидных топливных элементах. Проверена возможность герметизации разработанной системы с использованием стеклогерметиков и осуществлена сборка трубчатого твердооксидного топливного элемента с газовым узлом из керамических деталей. 

Твердые полимерные электролиты на основе полиуретанового эластомера для твердотельных суперконденсаторов

Твердые полимерные электролиты являются одним из перспективных материалов для твердотельных суперконденсаторов. В данной работе были получены твердые полимерные электролиты на основе полиуретанового эластомера (ПУ-ПФЛ100), наполненного раствором LiBF4 в N-метил-2- пирролидоне.

Струйная 3D-печать керамического интерконнектора на основе Zr0.9Y0.1O1.95 для микротрубчатых твердооксидных топливных элементов

Представлен новый дизайн интерконнектора для трубчатых твердооксидных топливных элементов, в котором функции электрического соединения и механического/газового распределения разделены. Электрическое соединение элементов реализовано отдельной металлической проволокой, прокладываемой по окружности каркаса. Разработан состав пасты и параметры струйной 3D-печати, а также режим спекания, позволившие получить плотные образцы с высокой микротвердостью.

Разработка и тестирование высокопористых анодов твердооксидных топливных элементов микротрубчатого типа

Предложена модификация метода фазовой инверсии, позволяющая контролировать геометрические параметры (диаметры, толщину стенки, степень соосности) анодных микротрубчатых подложек твердооксидных топливных элементов с высокой точностью. Благодаря особенностям процесса фазовой инверсии, протекающего одновременно с плавлением растворителя, были получены анодные микротрубки, обладающие повышенными значениями пористости и газопроницаемости по сравнению с трубками, полученными традиционным методом экструзии с фазовой инверсией.

Влияние способа получения La0.6Sr0.2Ba0.2Fe0.7Co0.2Ni0.1O3−δ микротрубчатых мембран на микроструктуру

Микротрубчатые мембраны состава La0.6Sr0.2Ba0.2Fe0.7Ni0.1Co0.2O3−δ были получены методами фазовой инверсии и погружения в суспензию с последующим спеканием на воздухе. Аттестация полученных микротрубчатых мембран осуществлялась методами рентгенофазового и рентгеноструктурного анализа, а также методом сканирующей электронной микроскопии. Проведен подбор оптимальной температуры спекания, которая определялась целевым применением микротрубчатых мембран и соответствующими требованиями к их микроструктуре.

Синтез нового катодного материала для твердооксидных топливных элементов на основе кобальтита лантана стронция и исследование зависимости термодинамических функций кислородного обмена от нестехиометрии

Синтезирован новый перспективный катодный материал для твердооксидных топливных элементов кобальтит лантана стронция, допированный катионами тантала. С помощью метода квазиравновесного выделения кислорода изучена высокотемпературная десорбция кислорода, определены диапазоны изменения кислородной нестехиометрии и определены значения термодинамических функций системы в области температур (600–850°C) и парциальных давлений кислорода (∼10−5– 0.2 атм).

Исследование электродных материалов на основе La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ оксидов, применяемых в твердооксидных топливных элементах и электролизерах

В работе исследовано влияние замещения катионов железа катионами никеля в структуре La0.65Ca0.35Co0.2Fe0.8O1−δ оксида на структурные и транспортные свойства электродных материалов для твердооксидных топливных элементов и электролизеров. Показано, что катионы Ni3+ изоморфно замещают катионы Fe3+ /Fe4+ в структуре перовскита. Методом Ван-дер-Пау исследована общая проводимость La0.65Ca0.35Co0.2Fe0.8−xNixO1−δ (x = 0, 0.05) материалов на воздухе в температурном диапазоне 100–850°С.

КАТАЛИЗАТОРЫ ЭЛЕКТРОВОССТАНОВЛЕНИЯ КИСЛОРОДА В ЩЕЛОЧНОЙ СРЕДЕ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК, МОДИФИЦИРОВАННЫХ МОЧЕВИНОЙ, ФТАЛОЦИАНИНАМИ ЖЕЛЕЗА, КОБАЛЬТА И ПАЛЛАДИЕМ

Синтезированы и исследованы катализаторы восстановления кислорода в щелочном электролите на основе многостенных углеродных нанотрубок, модифицированных мочевиной, фталоцианинами железа, кобальта и палладием. Проведены физико-химические исследования поверхности синтезированных материалов методами порометрии, КР-спектроскопии, рентгенофазового анализа, рентгеновской фотоэлектронной спектроскопией. Наибольшую площадь поверхности имеет катализатор, допированный фталоцианинами металлов (MWCNT(Urea)_CoPc_FePc_Pd).

Страницы