ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Skundin A. M. Forecast for usage of germanium in lithium-ion batteries. Electrochemical Energetics, 2025, vol. 25, iss. 1, pp. 3-9. DOI: 10.18500/1608-4039-2025-25-1-3-9, EDN: HXITXI

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 35)
Language: 
Russian
Article type: 
Article
UDC: 
544.6:621.355
EDN: 
HXITXI

Forecast for usage of germanium in lithium-ion batteries

Autors: 
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

Germanium is an attractive element for the anodes in lithium-ion battery. The current article discusses the issue of the availability of raw material for the battery industry, particularly in relation to Russia.

Acknowledgments: 
The work is supported by Ministry of Science and Higher Education of the Russian Federation on the topic “Physical chemistry and technology of materials for electrochemical and bioenergy (FFZS-2022-0016)”, registration number: 1021062110793-3-1.4.5;1.4.3.
Reference: 
  1. Kulova T. L., Skundin A. M. The Problems of Li-ion Batteries Develipment in Russia and Overworld. Electrochemical Energetics, 2023, vol. 23, no. 3, pp. 111–120 (in Russian). https://doi.org/10.18500/1608-4039-2023-23-3-111-120
  2. Grey C. P., Hall D. S. Prospects for lithiumion batteries and beyond–a 2030 vision. Nat. Commun., 2020, vol. 11, pp. 6279–6282. https://doi.org/10.1038/s41467-020-19991-4
  3. Kulova T. L., Skundin A. M. Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ. J. Electrochem., 2021, vol. 57, iss. 12, pp. 1105−1137. https://doi.org/10.1134/S1023193521110057
  4. Liu Y., Zhang S., Zhu T. Germanium-Based Electrode Materials for Lithium-Ion Batteries. ChemElectroChem, 2014, vol. 1, iss. 4, pp. 706–713. https://doi.org/10.1002/celc.201300195
  5. Tian H., Xin F., Wang X., He W., Han W. High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries. J. Materiomics, 2015, vol. 1, iss. 3, pp. 153–174. https://doi.org/10.1016/j.jmat.2015.06.002
  6. Wu S., Han C., Iocozzia J., Lu M., Ge R., Xu R., Lin Z. Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed., 2016, vol. 55, iss. 28, pp. 7898–7923. https://doi.org/10.1002/anie.201509651
  7. Hu Z., Zhang S., Zhang C., Cui G. High performance germanium-based anode materials. Coord. Chem. Rev., 2016, vol. 326, pp. 34–85. http://dx.doi.org/10.1016/j.ccr.2016.08.002
  8. Hao J., Wang Y., Guo Q., Zhao J., Li Y. Structural Strategies for Germanium-Based Anode Materials to Enhance Lithium Storage. Particle & Particle Systems Characterization, 2019, vol. 36, iss. 9, article no. 1900248. https://doi.org/10.1002/ppsc.201900248
  9. Liu X., Wu X.-Y., Chang B., Wang K.-X. Recent progress on germanium-based anodes for lithium ion batteries: Efficient lithiation strategies and mechanisms. Energy Storage Mater., 2020, vol. 30, pp. 146–169. https://doi.org/10.1016/j.ensm.2020.05.010
  10. Loaiza L. C., Monconduit L., Seznec V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism. Small, 2020, vol. 16, iss. 5, article no. 1905260. https://doi.org/10.1002/smll.201905260
  11. Great Russian Encyclopedia: in 30 vols. Moscow, BRE, 2006, vol. 6. pp. 684–685 (in Russian).
  12. Vinogradov A. P. Average contents of chemical elements in the main types of igneous rocks of the earth’s crust. Geokhimiya [Geochemistry], 1962, vol. 7, pp. 555–571 (in Russian).
  13. Taylor S. R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta, 1964, vol. 28, iss. 8, pp. 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2
  14. Adams J. H. Germanium and Germanium Compounds. In: ASM Handbook: in 10 vols. Vol. 2. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Detroit, Michigan, USA, ASM International, 1990, pp. 733–738. https://doi.org/ 10.31399/asm.hb.v02.a0001090
  15. Arroyo F., Fernández-Pereira C. Hydrometallurgical Recovery of Germanium from Coal Gasification Fly Ash. Solvent Extraction Method. Ind. Eng. Chem. Res., 2008, vol. 47, iss. 9, pp. 3186–3191. https://doi.org/10.1021/ie7016948)
  16. Tao J., Tao Z., Zhihong L. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction. J. Cleaner Prod., 2021, vol. 294, article no. 126217. https://doi.org/10.1016/j.jclepro.2021.126217
  17. Höll R., Kling M., Schroll E. Metallogenesis of germanium–A review. Ore Geol. Rev., 2007, vol. 30, iss. 3-4, pp. 145–180. https://doi.org/10.1016/j.oregeorev.2005.07.034
  18. Goldschmidt V. M. Geochemische Verteilungsgesetze der Element. IX Die Mengenverhältnisse der Elemente und der Atom-Arten. Skrifter Norske Videnskaps-akademi i Oslo, I. Matematisknaturvidenskapelig Klasse, 1937, Bd. C1, H. 4. Utg. for Fridtjof Nansens fond 1938. 148 S.
  19. Vinogradov A. P. Patterns of chemical elements distribution in the earth’s crust. Geokhimiya [Geochemistry], 1956, iss. 1, pp. 6–52 (in Russian).
  20. Moskalyk R. R. Review of germanium processing worldwide. Miner. Eng., 2004, vol. 17, iss. 3, pp. 393–402. https://doi.org/10.1016/j.mineng.2003.11.014
  21. Nguyen T. H., Lee M. S. A Review on Germanium Resources and its Extraction by Hydrometallurgical Method. Miner. Process. Extr. Metall. Rev., 2021, vol. 42, iss. 6, pp. 406–426. https://doi.org/10.1080/08827508.2020.1756795
  22. Dasch E. J., ed. Encyclopedia of Earth Sciences: in 2 vols. New York, Macmillan Reference USA, 1996. Vol. 1. 563 p.
  23. Frenzel M., Ketris M. P., Gutzmer J. On the geological availability of germanium. Miner. Depos., 2014, vol. 49, iss. 4, pp. 471–486. https://doi.org/10.1007/s00126-013-0506-z
  24. Patel M., Karamalidis A. K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies. Sep. Purif. Technol., 2021, vol. 275, article no. 118981. https://doi.org/10.1016/j.seppur.2021.118981
  25. Dai S., Finkelman R. B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol., 2018, vol. 186, pp. 155– 164. https://doi.org/10.1016/j.coal.2017.06.005
  26. Arroyo F., Font O., Chimenos J. M., Fernández-Pereira C., Querol X., Coca P. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. Fuel Process Technol., 2014, vol. 124, pp. 222–227. http://dx.doi.org/10.1016/j.fuproc.2014.03.004
  27. Vyalov V. I., Oleinikova G. A., Nastavkin A. V. Distribution of Germanium in Coals of the Pavlovsk Deposit. Solid Fuel Chem., 2020, vol. 54, pp. 163–169. https://doi.org/10.3103/S0361521920030118
  28. Arbuzov S. I., Chekryzhov I. Yu., Spears D. A., Ilenok S. S., Soktoev B. R., Popov N. Yu. Geology, geochemistry, mineralogy and genesis of the Spetsugli high-germanium coal deposit in the Pavlovsk coalfield, Russian Far East. Ore Geol. Rev., 2021, vol. 139, article no. 104537. https://doi.org/10.1016/j.oregeorev.2021.104537 
Received: 
21.06.2024
Accepted: 
20.01.2025
Published: 
28.02.2025